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ON A FAMILY OF STOKES FLOWS 
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SUMMARY 

A family of simple Stokes flows involving sliding surfaces adjacent to surfaces at rest is considered. 
Principally, two specific flow configurations are investigated: (i) that arising when parts of the boundary 
of an infinitely long circular cylinder are rotating about the axis while other parts of the boundary are at 
rest, and (ii) the flow produced when a cap of a sphere is held at rest while the remainder of the sphere 
rotates about the symmetry axis. In each case computer plots of streamlines or constant velocity lines 
are presented to give a general impression of the resulting flow pattern. 

KEY WORDS Stokes Flows 

1. INTRODUCTION 

Fluid motions in which inertia effects are small are described as Stokes flows; the equations 
governing these are the Navier-Stokes equations with the inertia terms omitted, a necessary 
condition for their validity as approximations of the full equations being that the Reynolds 
number, R, is small ( R  = 1U/v, where 1, U are appropriate length and velocity scales and v is 
kinematic viscosity). Such approximate solutions may not be uniformly valid, in which case 
another solution, valid in the appropriate region and matching onto the Stokes solution, is 
required. The archetypal problem in this context concerns uniform flow past a sphere.’ Since 
the viscous shear terms are assumed large in the Stokes approximation, the theory is 
applicable to the subject of lubrication and hence is of practical importance. 

The governing Stokes flow equations are thus 

v * o = o ,  v . u = o  (1) 

where ~ = V A U  is the vorticity. For two-dimensional motions these become, in terms of a 
stream function +, 

V2(V2+) = 0 (2) 

where V2 represents the two-dimensional Laplacian. 
We present the Stokes solutions for a number of problems: in Section 2 superposition is 

used to generalize a well-known solution involving a moving plane. Section 3 is concerned 
with fluid motion generated by a rotating circular cylinder with fixed shields, and in Section 4 
we consider flows generated by a sphere, part of which is rotating and the remainder at rest. 
Computer plots of either streamlines or constant velocity lines supplement the analytical 
solutions. The software permitted variation in grid size thereby allowing accuracy checks; 
however the results should be viewed as providing an overall picture of the flow. 
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The stimulus for this work arose in preparation of supplementary work for lecture courses, 
but it was later felt that it was also of interest to fluid dynamicists generally, and hence 
merited a wider circulation. 

2. PLANE GEOMETRY 

Consider the two-dimensional Stokes flow generated by a plane at y = 0, x > 0, moving 
uniformly in the x-direction with speed U, and a stationary plane occupying y = 0, x < 0. The 
problem is a special case of a family of flows2 and the solution of equation (2) is 

+ = U r ( 1 -  8 / r )  sin 8 (3) 
where r, 8 are plane polar co-ordinates, u, = r-' d+/M and u, = --d$/ar. The region of validity 
of this approximate solution is rU/v<< 1. Hancock3 has obtained higher order terms by 
perturbing about the term in (3) but our concern is solely with Stokes solutions. 

The linearity of the Stokes problem and the simple geometry allow superposition of 
solutions where regions of validity overlap. For example, when a section, 1x1 < a, of the plane 
moves in the x-direction with speed U, and Ua/v<< 1, with the remainder at rest, we obtain 

+ = (Uy/.rr){tan-'[y/(x - a ) ] -  tan-'[y/(x + a)]}.  (4) 
Figure 1 shows the contours of +T/( Ua) as a function of the dimensionless variables x/a, yla, 
the fixed part of the boundary y = 0 being indicated by a parallel line displaced slightly from 
its true position. The restriction on a (<<v/U) implies that (4) is a valid approximation near 
the slit. For Ua/v = 0 ( 1 )  it is to  be expected that the solution near x = a is given by (3) and 
is of similar simple form near x = -a. 

The solution (4) was given by Dean4 who then considered the limiting case a -+ 0, U +. co 

where aU remains finite. Then 

+ = 2.rr-laU sin2 8 ( 5 )  

which, owing to the failure of (3) for r U / v =  O(1) cannot be regarded as giving the 
approximate behaviour of the Navier-Stokes solution at sufficiently large distance from the 
moving surface. Contours of .rr+/(aU) are straight lines radiating from the origin and give the 
approximate behaviour of (4) beyond a couple of gap widths from the origin. The solution 

Figure 1. Contours of +r/ (Va)  from (4). The flow is generated by a section of the wall moving in its own plane 
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tc, = A sin2 0 is a uniformly valid Stokes solution, although Dean shows that there is no 
solution $(O) of the Navier-Stokes equations satisfying appropriate conditions on y = 0. 

3. CYLINDRICAL GEOMETRY 

The flows investigated here are generated by the uniform rotation, about its axis, of an 
infinitely long circular cylinder with a fixed infinitely long shield, or shields, over part(s) of it; 
the problem is thus assumed to be two-dimensional. The flow may be interior or exterior to 
the cylinder: the former, with one shield was first studied by Mabey’ and later by Dean.4 

(a) Single shield 

Referred to cylindrical polar co-ordinates (r, 8, z) the cylinder r = a rotates about the 
z-axis with constant angular velocity w. Consider a fixed shield at r = a, a < 0 < 2.rr - a, so 
that in terms of a stream function tc,(r, 0) we seek to solve (2) subject to 

9 = constant = 0, say 
atc,//ar = -aw, -a < 0 < a  

= O ,  ~ ~ < 0 < 2 ~ - a  
on r = a.* 

For the interior flow we find 
m 

tc, = (a20/2.sr)(1 - p’) pnn-l  sin na cos no 

where p = r/a, or equivalently, 
p’ sin 2 a  - 2p sin a cos o 

1 - 2p cos a cos 8 + p2 cos 2a 
tc, = (a20/2.rr)(1 - p’) (7) 

a form uniformly valid over the whole field. Mabey gave a geometrical construction, based 
on (7, for drawing the streamlines and so presented a diagram for a = v/2. We have used 
computer graphics facilities to show streamline patterns for a = .rr/lO, .rr/2, 9.rr/lO: see 
Figures 2(a), (b), (c). The fixed part of the boundary is again indicated by a slightly displaced 
line. Care is needed in interpreting the arc-tangent term to ensure continuity of tc,. For small 
values of CY (large shield) an eddy forms near the small moving portion of the boundary, its 
centre moving towards r=O as CY increases, so that as a approaches .rr, the motion 
approaches rigid body rotation. 

For CY << 1, equation (7) is approximated by 

tc, 5 a’oa (1 - p2)’/[2.rr(1 - 2p cos 6 + p’)] (8) 

except for 1 - p = O(a) and 0 = O(a).  Figure 2(d) shows contours for a = r / l O  and we note 
the satisfactory agreement with Figure 2(a) away from the vicinity of the moving cylinder. 
The result (8) is equivalent to an expression derived by Dean who invoked the double limit 
a -+ 0, V +  00 with aV finite, where V = ao. Finally, note that the superposition of an 
angular velocity -o interchanges the roles of shield and moving cylinder. 

The behaviour of (8) in the neighbourhood of the moving part of the cylinder is of the 
form (5) corresponding to straight streamlines. The contours in Figure 2(d) are not of this 
form near p = 1, 8 = 0, due presumably to the coarseness of the grid used. 

* Smith6 has considered in detail the boundary-layer problem when the Reynolds number is large. 
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0 

Figure 2. Single shield. Contours of 2 M / ( a 2 w )  from (7) with (a) a = d 1 0 ,  (b) Q = ~r/2 and (c) a = 9 ~ / 1 0 .  
(d) Approximate contours from (8) for a << 1 (compare with (a)) 
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When the flow is in r > a  the solution of (2) subject to (6) is 

sin 2 a  - 2 p  sin a cos 8 
p2-2p cos 8 cos (Y +COS 2 a  

a log p +;(I - p') tan-' (9) 

which, by analogy with Section 2 is non-uniformly valid at 00. Figures 3(a), (b), (c) show 
streamlines for typical cases of a small, a = 7r/2 and a close to 7 ~ .  For a close to 7~ (small 
shield) the flow on the side of the cylinder opposite the shield is very similar to that when no 
shield is present: the streamlines are closed. For smaller values of a (Figures 3(a), (b)), the 
streamlines go off to infinity. The critical value of a separating the two distinct forms is given 
by the root of tan(a/2)=a, i.e. a =2.33112. 

0 0 

-1. 

-2. 

-3.B' , I I I I I I I I I 
- L a 0 - . 0 - k . 0 - 5 . 0 - h . 0 - \ . 0  l . 0  '1.0 L 0  5.0 

( C )  

Figure 3. Single shield. Contours of 2 @ d ( a 2 w )  from (9) with (a) Q ==/lo, (b) (Y = ?r/2 and (c) Q = 9~110 
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1. 

Figure 4. Two shields. Contours of $d(a20)  from (11) with (a) a = ?r/20, (b) a = 7r/4 and (c) a = 9?r/20 



ON A FAMILY OF STOKES FLOWS 69 1 

For small values of a, (9) is approximated by 

+= -(a20a/7r)[iogp+(i-p2)(i-p cos e)/(p2-2p cos e+i ) ]  (10) 

except near p = 1, 8 = 0. Again agreement between approximate (10) and exact (9) results is 
good for a = ~ / 1 0  except in the region of p = 1, 8 = 0. 

(b) Two, and more, shields 

The two forms of single shield solution discussed in (a) can be used to construct slow flows 
caused by a rotating cylinder with any number of fixed shields, using superposition as in 
Section 2. In order to restrict the number of parameters we examine only symmetrically 
placed shields here, and no more than four shields. 

First, consider the flow in p 6 1 with fixed shields at p = 1, a < 8 < 7r - a and 7r f a  < 8 < 
2 ~ - a  where O<a < 7r/2. Simple superposition of solutions of the form (7) gives 

)] (11) ( 1 - 2p2 cos 2a cos 28 + p4 cos 4a 
p4 sin 4a - 2p2 sin 2a cos 28 += (azw/.rr)(l-p2)[a -+ tan-' 

which, since each of its constituents is uniformly valid, is itself so also. Figures 4(a), (b), (c) 
show streamlines for a = 7~/20, 7r/4, 9 ~ / 2 0 .  For small values of a two eddies form near the 
two small moving parts of the boundary (see Figure 4(a)): the fact that (11) is the sum of two 
solutions each containing an eddy is indicative of this provided that each eddy is in the 
relatively weak part of the field of the other. However, comparison of the two streamline 
patterns near the moving boundary when cr = 7rl20 shows reasonable agreement with either 
of the eddies of (11) only very close to the moving boundary (see Figure 4(a)). Batchelor's 
result7 suggests that for high Reynolds number flow only one eddy would exist and hence 
that a critical R separates the two phenomena. The Stokes flow eddies when a is small 
approach one another as a increases until they coalesce forming a single eddy, so that as 
a + 7r/2 the flow approaches solid body rotation (Figure 4(c)). The transition between the 
forms occurs when sin 2a =a,  i.e. a = 0-94775. For small (Y 

+= ( a 2 0 / T ) a ( l - p ~ ) * ( 1 + p 2 ) / ( 1 - 2 p 2 C O S  28+p4) (12) 

approximately, and again contour plots of (12) for a = 7r/20 are very similar to the exact plot, 
except close to the moving cylinder where (12) fails as an approximation. 

For p 2 1 with the same boundary conditions 

)] (13) 
(p4- 2p2 cos 28 cos 2a + COS 4a 

sin 4a - 2p2 sin 2a cos 28 + = - (u2u/7r) 2a log p ++(I  - p2) tan-' [ 
which fails as an approximation of the Navier-Stokes quations when p is large. Figures 5(a), 
(b), (c) show streamlines for a = d20, ~ / 4 ,  9d20. The approximated form of (13) for small 
a gives contours almost indistinguishable from the exact form when a = ~ / 2 0  except near the 
moving cylinder where the approximation fails. 

The existence of the two eddies in the interior flow with two shields led us to examine 
interior flows with three and four symmetrically placed shields. In the former case with 
shields at a < 8 < 27r/3 - a, 2 ~ 1 3  + a < 8 < 4713 - a and 4 ~ / 3  + a < 8 < 27r - a the solution is 

where 8, = 8 + 2 K d 3 .  Streamlines for a = ~ / 6 0  and 7r/6 are shown in Figures 6(a), (b), and 
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( C )  

YAxIS* lO 
Figure 5. (a), (b), (c). Two shields. Details as for Figure 4 
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(b) 

Figure 6. Three shields. Contours of 2$m/(a2w) from (14) with (a) a = ~ / 6 0  and (b) (Y = ~ / 6  

there are indeed three eddies for a = ~ 1 6 0  but not for a = ~ 1 6 .  The critical a separating the 
regimes has not been evaluated. The rectangular nature of the grid used by the graphics 
procedure explains the lack of symmetry of the streamlines in Figure 6(a) about 8 = 0, 2 ~ 1 3  
and - 2 ~ 1 3 .  Figures 7(a), (b) illustrate streamlines when there are four symmetrically placed 
shields at a < 8 < 7r12- a, ~ 1 2 - t  a < 8 < r r  - a, T -t a < 8 < 3 ~ 1 2 -  a, and 3 ~ 1 2 - t  a < 8 < 
27r-a with a = ~ 1 8 0  and ~ 1 8 :  note the four eddies for small a. For both the three and four 
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(b) 

Figure 7. Four shields. Contours of &r/(a20) with (a) a = ~ / 8 0  and (b) a = 7r/8 

shield examples agreement between exact forms and their small a analogues is excellent for 
small a, subject to the same limitations as in previous cases. 

The above solutions are zeroth order terms in expansions of @ in powers of the Reynolds 
number; clearly higher order terms would be tedious to calculate from ,them, although the 
small a forms e.g. (8) appear more tractable. However, Dean showed that an expansion with 
(8) as zeroth order terms fails at a later stage. 
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4. THE SPHERICAL GEOMETRY 

Referred to spherical co-ordinates (r, 8,4) ,  part (8 < p )  of a sphere of radius a is held at rest 
while the remaining cap rotates about 8 = 0 with constant angular velocity o. The flow may 
be in r 5 a, or r z- a. The Stokes velocity field has a single component so that v, = v, = 0 to 
this order, and we assume rotational symmetry 8/84 = 0. Thus the Navier-Stokes equations 
become 

(15) V’V, - v,/(r” sin” 8) = O .  

The solution of (15) having no singularities at 8 = 0, T is 

where P k  is the associated Legendre function of degree m and order one; for interior flows 
B, = 0, whereas for exterior flows A, = 0. The boundary conditions on r = a are 

v,=o, o<e<p 
= aw sin 8, p < 8 < 7r. 

The evaluation of the A,,B, for general p presents some difficulty and so we confine 
attention to some special cases only. 

For the interior flow problem with p = rr/2 we find 

A, = - ~ o / 2 ,  Azrn+l 0, A,, = ao(-l)”-l(2m +$)(m - 3/2)! /4J~(m + l)! 

for m = 1 ,2 , .  . . so that with p = r/a 

Thus v, = $ro on 8 = 7r/2. Figure 8(a) shows lines of constant v,/ao using the first six terms 
in the summation expression. The convergence of (18) is such that a larger number of terms 
is required in some regions; we have consequently only given a restricted plot where the 
effect of the sixth term is negligible, but have indicated, by broken lines, the behaviour 
expected near the singular point p = 1 ,8  = ~ / 2  and also in the region of p = 1, 7r/2< 8 < n 
(more detail concerning the former is given later). 

Other analytically tractable problems correspond to 0 << 1 and 0 < T - P  << 1: these are 
closely related, the superpositon of an angular velocity --o interchanging fixed and moving 
parts. 

With p << 1 the solution of the interior flow problem p < 1 is 

v, = a o  sin 8[pPl(cos 8)-(p4/8) C (rn +$)p”P;(cos 8)] 
1 

approximately. The series may be summed analytically to give 

v, = aop sin 8[1- 3p4(1 - p2)/16(1 - 2p cos 8 + P ~ ) ~ ’ ” ]  

v, = 3 a w ( ~  - ~ ) ~ p ( l -  p”) sin e/i6(i + 2p cos 8 + p”)”” 

(20) 

(21) 

except when p = 1 and 8 = 0 where there is a singularity. For 0 < T - p << 1 we find similarly 

except at the singularity p = 1, 8 = T where the approximation fails. Figure 8(b) shows lines 
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Figure 8. (a) Lines of constant u,/ao, from (18), due to one hemisphere rotating and the other held fixed. See text 
for further information. (b) Lines of constant 103uJao, from (21) due to a small cap of the sphere rotating and the 

remainder at rest 
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of constant 103u,/ao, using (21) with P = 9 ~ / 1 0 .  No plot from (20) is presented as the 
departure from solid body rotation is extremely small for P << 1. 

+ T the flow pattern near 8 = 7~ should approach that for a small spinning disc in a 
fixed infinite plane. In terms of cylindrical polar co-ordinates (r, 8, z )  the disc z = 0, r 5 b 
spins with constant angular velocity CR; z = 0, r > b is at rest and the fluid occupies the region 
z > 0. With u, = u, = 0 to this order, and a/a8 = 0, the swirl velocity satisfies V2ve - ve/r2 = 0 
subject to boundary conditions ue = rCR, r 5 b and ue = 0, r > b on z = 0, with ve bounded as 
z + CQ. This has solution 

As 

m 

Ve = b.1 e-""*Jl(sr/b)J2(s) ds (22) 

where J, is the Bessel function of order n. Hence for r >> b, z >> b Ve is given approximately by 

ve = 3CRb4rz/8(r2+ z ~ ) " ~ .  (23) 
With a suitable change of origin and interpretations of b, il this behaviour is equivalent to 
the limiting behaviour of u, in (21) close to p = 1, 8 = T. Figure 9 shows lines of constant 
v,/bR using equation (23). 

A simple uni-directional flow relevant to the first flow of this section is that generated by 
the semi-infinite plane z = 0, y > 0 moving parallel to the x-axis with speed U, while z = 0, 
y <O is at rest with the fluid occupying z >O. The velocity, u, in the x direction is 

u/U=++m-l tan-'(y/z). 

Figure 8(a) shows lines corresponding to constant u-these can only be applicable very close 
to p = 1,8 = 7r/2 and although we cannot show that they represent the continuation of the 
constant v, lines there seems good evidence to suggest that they are so. 

For exterior flow with boundary conditions (17) and p = 7r/2 

u, = (ao/2p2) sin 8 - (aw/4J7~)  sin 8 
m 

(-1)"-l(2s ++)(s- 3/2)! p-2"-1P;,(cos O)/(s + l)! 
s = l  

(24) 

so that v, = ao/2p2 on 8 = ~ / 2 .  Figure 10(a) illustrates lines of constant v d a w :  again we 
show only those parts where the effect of the last term retained in the summation is 

Figure 9. Lines of constant qJbn due to a small disc rotating in an infinite plane at rest 
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Figure 10. (a) Lines of constant u,/ao, from (24), due to one hemisphere rotating and the other held fixed. See text 
for further information. (b) Lines of constant 10u,/[aw(~ - P)4], from (26), due to a small cap of the sphere rotating 

and the remainder at rest 

negligible. Broken lines indicate expected behaviour near p = 1,8 = d 2 .  The poor con- 
vergence near p = 1 , ~ / 2  < e < m existing in the interior problem is not noticeable on the 
scale of the present Figure. 

For exterior flows with << 1 we find 

V+ = am sin f3[pP2- 3p4p(p2  - 1)/16(1- 2p cos 8 + p2)5 /2]  (25) 

approximately, except at p = 1, 8 = 0 where there is a singularity. When O <  T - @<< 1, 
superposition gives the approximate solution 

v+ = 3 a w ( ~  - p)4p(p2-  1) sin 19/16(1+ 2p cos 8 + p2)’/’ (26) 

except at the singularity p = 1, 8 = T. Figure 10(b) shows lines of constant l O v , / a o ( ~ - P ) ~  
from (26) when p = 19?r/20; we do not plot results from (25) as the departure from the p = 0 
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solution is very small for 6 << 1. An appropriate shift of origin and interpretation of b and Cl 
show that zlg from (23) is equivalent to the limiting behaviour of zl+ in (26) when p is close 
to 1 and 8 to r. 

5 .  DISCUSSION 

The flows investigated above form part of a wider class of Stokes flows whose prototype is 
the Taylor solution (see e.g. Reference 2). Those of Sections 2 and 3 are analytically 
straightforward enough to be valuable in teaching fluid dynamics and may be approached in 
the sequence: (i) prediction of flow using physical intuitition, (ii) analysis and (iii) confirma- 
tion of (i). It is possible also, for example, to investigate streamlines analytically for large or 
small shields and in the vicinity of specific points. 

Also of interest and arising from Section 3 is the possible generation of multiple eddies by 
boundary motions of a circular cylinder. It seems reasonable to suppose that n (>4) sleeves 
of suitable size and siting would produce n eddies within such a cylinder: there may be an 
upper bound on n. There is also scope for experimental verification of the predictions. 
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